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By means of the variational formalism for the nonlinear Schrödinger equation, we find an explicit relation
for the power of a pulse in terms of its duration, chirp and fiber parameters �group-velocity dispersion and
self-phase modulation parameters�. Then, using that relation, we derive the explicit analytical expressions for
the variational equations corresponding to the amplitude, width, and chirp of the pulse. The derivation of the
analytical expressions for the variational equations is possible for the condition when the Hamiltonian of the
system is zero. Finally, for Gaussian and hyperbolic secant ansatz, we show good agreement between the
results obtained from the analytical expressions and the direct numerical simulation of the nonlinear
Schrödinger equation.
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I. INTRODUCTION

Almost all the complex nonlinear partial differential equa-
tions governing the nonlinear systems are in the family of
nonlinear Schrödinger equation �NLSE�. Many important
physical systems like, nonlinear fiber optics, Bose-Einstein
condensate �BEC�, water waves, plasma waves, etc., are gov-
erned by the NLSE �1�. The propagation of intense optical
pulse in a nonlinear Kerr medium has attracted considerable
attention from the scientific community. In this case as well
the dynamics of the nonlinear pulse propagation is governed
by the NLSE, in which the group-velocity dispersion �GVD�
and self-phase modulation �SPM�, form a basic set of optical
processes describing a broad range of realistic physical situ-
ations �2�. Other equations in the family of NLSE are usually
called as higher-order NLSE or generalized NLSE, which
may include other effects like optical losses, high-order dis-
persion, stimulated inelastic scattering and self-steepening
effects �2�. The NLSE is studied extensively in order to un-
derstand the influence of combining those effects. A particu-
lar initial condition of the pulse leads to a particular dynami-
cal process during its propagation in the optical fiber. The
more famous of such a process is the conventional soliton. It
can be observed when the effect of anomalous GVD is ex-
actly balanced by the SPM in optical fibers �3�. Thus formed
�soliton� pulse can then propagate without any deformation
of its shape.

Under special cases, the NLSE is completely integrable
and the corresponding soliton solutions can be derived using
the standard technique called inverse scattering transform
�4�. But the family of NLSE equations governing most prac-
tical cases like conventional fiber transmission system,
dispersion-managed �DM� fiber system are not completely
integrable in general. Even though some perturbation meth-

ods were reported to investigate the behavior of physically
interesting nonintegrable NLSE family, researchers working
in nonlinear optics and other fields mostly rely on numerical
methods and Lagrangian variational method to study the sys-
tem dynamics �5,6�. Variational method is one of the widely
used approximation techniques which has been applied to
study the dynamics of various pulse parameters with respect
to the system parameters, to estimate pulse interaction length
and to find the fixed point solutions of DM fiber systems �6�.
There are numerous works related to the modification of the
variational method to include various important effects ne-
glected in the formalism of typical variational analysis. One
of the important factors considered by various researcher to
modify the variational method has been on the radiation in-
duced solitons interactions �7–9�. Kuznetsov et al., consid-
ered the nonlinear interaction of solitons and radiations �10�,
where they reported the unsuccessful application of the
variational method. Nevertheless all these works were based
on the fundamental variational method and its success or
failure. Mikhailov has reported an interesting article about
the validity of the variational analysis �11�.

In this work, we derive the exact analytical expressions
for the variational equations corresponding to the amplitude,
width and chirp under the condition when the Hamiltonian of
the system is zero. We finally show that the results obtained
from the solutions of the variational equations are in good
agreement with the results obtained from the direct numeri-
cal simulation of the NLSE. This paper is organized as fol-
lows. In Sec. II, we present the variational analysis of the
NLSE. The exact analytical expressions for the amplitude,
width and chirp is derived in Sec. III. The comparison be-
tween the results obtained by analytics and numerics is pre-
sented in Sec. IV. Finally, in Sec. V, we conclude.

II. VARIATIONAL ANALYSIS

The propagation of nonlinear pulses in optical medium,
like fibers, obeys the NLSE �2–4�
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�z +
i�

2
�tt − i����2� = 0, �1�

where � is the slowly varying envelope of the axial electrical
field, which is a function of time t and space z. � and �
represent the GVD and SPM parameters, respectively. We
have reported a collective variable method to analyze the
nonlinear pulse propagation in fiber system in terms of pulse
parameters like the amplitude, temporal position, pulse
width, chirp, frequency, and phase �12,13�. The above pa-
rameters are called the collective variables. Using the collec-
tive variable method and assuming the following ansatz for �
in the NLSE �1�

� = x1�� t − x2

x3
�exp� ix4

2
�t − x2�2 + ix5�t − x2� + ix6	 , �2�

the pulse width evolution equation can be derived as �over-
head dot represents the derivative with respect to z� �14�

ẍ3 =
�1�2

x3
3 +

�2��E0

x3
2 . �3�

Here x1 ,x2 ,
2 ln 2x3, x4 / �2�� ,x5 / �2�� and x6 represent the
pulse amplitude, temporal position, pulse width �FWHM�,
chirp, velocity and phase, respectively. �1 and �2 are two
constants which depend on the particular choice of the ana-
lytical function � assumed to represent the pulse profile.
E0=x1�0�2x3�0�=x1�z�2x3�z� is a constant related to the en-
ergy of the pulse. On integrating Eq. �3� yields

ẋ3
2

2
= −

�1�2

2x3
2 −

�2��E0

x3
+ C , �4�

where C is the integration constant related to the Hamiltonian
of the system through the relation �15,16�

H =
C
�

�5�

and is given by �14,16�

C =
�1�2

2x30
2 +

�2��E0

x30
. �6�

x30 is the initial pulse width at z=z0. Equation �6� shows that
the energy of a pulse while propagating in a dispersive and
nonlinear medium, like an optical fibre, depends directly on
the parameter C. In other words, a given value of C will lead
to a particular solution for Eq. �4�. From Eq. �6�, it is clear
that the constant of integration C can take any real positive,
negative or zero values �16�. The solution of Eq. �4� thus
depends on the value of the parameter C. When C is nonzero
then the solution of Eq. �4� becomes transcendental and
gives the length of the pulse propagation with respect to the
assumed initial and final values for the pulse width �see Eq.
�9� in Ref. �14��. This solution of Eq. �4� with nonzero value
for C has been successfully exploited for the analytical de-
sign of DM fiber transmission system for a given set of pulse
and fiber parameters �14,17–19�.

III. ANALYTICAL SOLUTIONS

In this work we are interested in the solution of the dif-
ferential equation �4� when the constant of integration C is
set to zero �system with zero value for the Hamiltonian�. For
this case we first find, according to Eq. �4�, the energy E0 is
given by �using the variational equation of the pulse width as
ẋ3=−�x3�z�x4�z� �14��

E0 = −
�

2�2�
x3

3�z�x4
2�z� −

�1�

2��2

1

x3�z�
. �7�

With C=0 in Eq. �6�, E0 can also be expressed in terms of the
initial pulse width as

E0 = −
�1

2�2

�

�x30
. �8�

From both the expressions �7� and �8� it is clear that E0
depends on the choice of the ansatz function � representing
the shape of the pulse. The integration of Eq. �4� with C=0
yields

2

3�2�2��E0�2 �− �1�2 − 2�2��E0x3�3/2 −
− 2�1�2

�2�2��E0�2

��− �1�2 − 2�2��E0x3�1/2 = ± �z + �� , �9�

where

� =
2

3�2�2��E0�2 �− �1�2 − 2�2��E0x30�3/2

−
− 2�1�2

�2�2��E0�2 �− �1�2 − 2�2��E0x30�1/2 − z0 �10�

is the initial condition at the launch point z0. Taking the
factor �−�1�2−2�2��E0x3�1/2 in Eq. �9� yields

− 2�− �1�2 − 2�2��E0x3��− 2�1�2 + 2�2��E0x3�
3�2�2��E0�2

= ± �z + �� . �11�

Taking the square of Eq. �11� and rearranging we get

y3 − 3�1�y2 − 4�3�3 +
9�

4
�− 2�2�E0�4�z + ��2 = 0,

�12�

where y=2�2�E0x3. Then, replacing y with r+�1� we get
the following cubic equation,

r3 + ar + b = 0, �13�

with a=−3�1
2�2 and b=2�1

3�3+9��−2�2�E0�4�z+��2 /4.
The roots of Eq. �13� can be written as

r��1,�2,z� = �−
b

2
+
b2

4
+

a3

27
�1/3

+ �−
b

2
−
b2

4
+

a3

27
�1/3

.

�14�

Equation �14� has a physical constraint as b2 /4+a3 /27 to be
positive. Finally, replacing r, a and b by their respective
expression, we find that the pulse width is given by
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x3�z� =
1

�E0
��P + 
P2 + Q�1/3 + �P − 
P2 + Q�1/3�

+
1

2
�1�2��E0, �15�

where

P = −
1

2
�1

4

�1
3

�2
3 +

9

2
�2��4E0

4�z − ��2	
and

Q = �−
�2

4

�1

�2
�3

.

This relation describes explicitly the evolution of the pulse
width, in a dispersive and nonlinear optical fiber medium,
with respect to the GVD ���, SPM ���, initial pulse width
�x30�, energy �E0� and the propagation distance �z�. Using the
expression �15� for x3 in x1=
E0 /x3 and x4=−ẋ3 / ��x3� �14�,
�ẋ3 can be readily calculated from Eq. �4� with C=0�, we find
the exact analytical expressions for the amplitude and chirp
of the pulse as

x1�z� =

E0


 1

�E0
��P + 
P2 + Q�1/3 + �P − 
P2 + Q�1/3� +

1

2
�1�2��E0

and

x4�z� = ±

�1�2 − 2�2���P + 
P2 + Q�1/3 + �P − 
P2 + Q�1/3� − �1��2��E0�2

�� 1

�E0
��P + 
P2 + Q�1/3 + �P − 
P2 + Q�1/3� +

1

2
�1�2��E0�2 .

IV. NUMERICAL SIMULATIONS

For different choice of the ansatz function � in Eq. �2�,
the constants �1 and �2 can take different values. Most com-
monly used profile for the pulse propagation in optical fibers
is Gaussian or hyperbolic secant ansätze. When we consider
the Gaussian function for � as

�� t − x2

x3
� = exp� �t − x2�2

x3
2 	 , �16�

then the constants �1 and �2 take the values 4 and 
2, re-
spectively. When we consider the hyperbolic secant function
for � as

�� t − x2

x3
� = sech� t − x2

x3
� , �17�

then the constants �1 and �2 take the same value as 4/�2.
For completeness we compare the results obtained using

the analytical solutions of the variational equations and
direct numerical simulation of the NLSE �1�. For this we
consider the pulse propagation in an optical fiber with
GVD parameter �=1 ps/ �nm km�, SPM parameter �
=0.0014 m−1 W−1, initial pulse width x30=3 ps and length
20 km. Figure 1 shows the results obtained from the analyti-
cal expressions �solid curves� and numerics �dashed curves�
for a Gaussian pulse propagation. Figure 2 shows the results
obtained from the analytical expressions �solid curves� and
numerics �dashed curves� for a hyperbolic secant pulse

propagation. In both Figs. 1 and 2, we have also plotted the
residual field energy �RFE� which is the difference between
the energies of the pulse calculated from numerics and the
best fit ansatz function �12,13�. The RFE can give an idea
how good is the shape of the pulse maintained during the
propagation with respect to the chosen ansatz function. From
the results presented in Figs. 1 and 2 it is obvious that there
is very good agreement with the analytical solutions of the
variational equations and the numerical solution of the
NLSE.
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FIG. 1. Evolution of the pulse amplitude, width, and chirp for
the propagation of a Gaussian shaped pulse. Solid and dashed
curves show the results obtained from the analytical solutions of the
variational equations and the numerical solution of the NLSE �1�,
respectively.
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V. CONCLUSION

To conclude, we have found the direct relation between
the pulse energy, width, and chirp for a pulse propagating in

a nonlinear fiber with anomalous dispersion, in the limit
where the Hamiltonian of the system is zero. Then, using that
result, we have found the exact analytical expressions for the
amplitude, width, and chirp of the pulse with respect to the
fiber parameters and initial pulse width. For the Gaussian
and hyperbolic secant ansätze, we have compared the results
obtained from the analytical solutions of the variational
equations with the results of the direct numerical simulation
of the NLSE. As the analytical solutions for the variational
equations are obtained for any general ansatz function, the
expressions obtained could be used for the pulse with any
profile. We believe that the analytical results reported in this
work could be utilized not only in the context of optical
fibers but also to any system governed by the NLSE.
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FIG. 2. Evolution of the pulse amplitude, width, and chirp for
the propagation of a hyperbolic secant shaped pulse. Solid and
dashed curves show the results obtained from the analytical solu-
tions of the variational equations and the numerical solution of the
NLSE �1�, respectively.
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